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Abstract— gueue will exceed a threshold. Such results establish that

We consider a single node which multiplexes a large num- the resulting loss probability estimaiér) asymptotically
ber of traffic sources. We restrict ourselves to consideration gpeys:

of aggregates of i.i.d. flows that can modelled using effective b(z) ~ e 1)
bandwidth results. We are concerned with the amount of

buffer and bandwidth that should be allocated to this aggre- wherez is the buffer thresholdy is a positive constant
gate, under a maximum overflow probability constraint. Un- cglled theasymptotic decay rat@nda is a positive con-
like previous approaches which assume that the total buffer giant called thesymptotic constantThe limit is usually

allocated to the class is either constant or linearly propor- e a5 the buffer approaches infinity, for a fixed band-
tional to the number of sources, we wish to determine the .
width (see e.g. [1]).

minimum cost allocation given a cost per unit of each re- i i
source. Later results extended (1) to a wide range of traffic

We first consider a class of on/off fluid flows. We find that sources and to multiplexed i.i.d. traffic flows, where now
the optimal bandwidth allocation above the mean rate and z is the total buffer shared by flows (see e.g. [2], [3],
the optimal buffer allocation are both proportional to the [4], [5], [6], [7], [8], [9]). The limit is usually taken as the
square root of the number of sources. Correspondingly, we number of sources approaches infinity, with a fixed band-
find that the excess cost incurred by a fixed buffer allocation width and buffer per source. The resulting loss probability

or by linear buffer a}llocatlons Is proportional to the square Testimate is thus interpreted as the probability of exceeding
of the percentage difference between the assumed number o a delay bound

sources and the actual number of sources and to the square )
root of the number of sources. Such results have often been used to formulate admis-
We next consider a class of general i.i.d. sources for which sion control policies (see e.g. [10], [11]). If a class of flows
the aggregate effective bandwidth is a decreasing convexhave identical traffic characteristics, and share a common
function of buffer and linearly proportional to the number of  Quality of Service (QoS) requirement that the loss proba-
sources. We find that the optimal buffer allocation is strictly bility should not exceeg, then a new connection should

increasing with the number of sources. Correspondingly, e o, 5 canted if and only if the available bandwidth exceeds
find that the excess cost incurred by a fixed buffer allocation . )
the effective bandwidtkhat results from (1).

is an increasing convex function of the difference between . )
the assumed number of sources and the actual number of These results have also often been interpreted in the con-

sources. text of dimensioning. To accommodabé flows with a
Keywords— Resource allocation, cost minimization, di- Maximum loss probability gf, the required bandwidth per
mensioning source can be calculated if the reserved buffer per source is

known. The buffer per source might be chosen based on an
l. INTRODUCTION estimate of the typical availability of buffer versus band-
width, and perhaps on an estimate of the average number

A. Background of flows.

HERE is now a rich literature on the use of effec- In this paper, we examine the assumption that buffer
tive bandwidth to estimate the buffer and bandwid#nd bandwidth should be allocated in constant proportion.
requirements of network traffic sources, particularly fgks many previous researchers have demonstrated, a set of
sources with real-time loss and delay constraints. flows can achieve a maximum loss probability using var-
Early results considered a single traffic flow. The typious combinations of total shared buffer and bandwidth
cal approach estimates the loss probability of the flow ligee e.g. [12]). Our goal in this research effort is to un-
the probability that the buffer content in an infinite buffeflerstand how the optimal combination of buffer and band-
Scott Jordan is with the University of California, Irvine, and can b\éVidth might vary Wit.h the number of flows.
reached at Dept. ECE, 544D Engineering Tower, LJnivers’ity of Califor- TQ defm_e optlmallty, we assume that there .are COsts as-
nia, Irvine, CA 92697 or at sjordan@uci.edu. This work was support&@ciated with each unit of buffer and of bandwidth. The ra-
by NSF and by DARPA. tio of the cost per unit bandwidth to the cost per unit buffer
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should reflect the relative demand for bandwidth to bufféal buffer, and adjusts the bandwidth (depending on the
from all of the traffic flowing through the router. This ranumber of sources) to satisfy the loss constraintInA
tio might be based on average traffic estimates of variotremented BuffefiB) policy allocates a constant amount
classes of traffic. If a pricing policy is used, then the costé buffer per source and adjusts the bandwidth to satisfy
can be interpreted as shadow costs (Lagrangian multiphie loss constraint.
ers) that result from the pricing policy (see e.g. [12], [13], The results in figure 1 do not correspond to either a FB
[14]) or an IB policy. The optimal resource allocation policy
We define the optimal combination of buffer and bands neither to fix the buffer length and then add bandwidth,
width as the minimum cost choice that achieves the desimal to add buffer and bandwidth in constant proportion.
QoS. In this paper, we equate QoS with loss probabilitpdeed, we can numerically compare the optimal alloca-
but it is simple to add a limit on buffer in order to enforcéion policy to these two alternate policies. The results are

a maximum delay constraint. shown in figure 2, where the buffer allocations for FB and
o IB were initially calculated for 750 sources, and then the
B. Motivating Example number of sources was varied from 500 to 1000. We note

As a motivating example, consider a single node whid¢Rat the cost difference appears to be increasing and con-
multiplexes compressed real-time voice sources, modelN&X With the difference between the actual and nominal
as on/off fluid flows with a mean on time of 340ms, a med/mber of sourceg{/ — 750]).
off-time of 780ms, and a peak rate of 8kbps. We require_
that the overflow probability should not exceed 0.01. W |
normalize all quantities: time is represented in units eqLs '

0.035 -

to the mean on time, bandwidth is represented in units; )

0.03

the peak rate, and buffer is represented in units of the é‘ . ]
erage number of arriving bits per on/off cycle. We set tr"™"[ N |
ratio of cost per unit bandwidth to buffer to 1 (which due t: °*| <
normalization implies that 8kbps of bandwidth is equallg **° 0 )
expensive as 340 bytes of buffer). )

Using an estimate of overflow probability derived by o=t 1
Morrison [15], we can numerically derive the minimun =05 700 755 w0 w80 w0 w0 oo
cost buffer and bandwidth allocations. The results are A
shown in figure 1, as a function of the number of sourcE®- 2. Cost difference between optimal and alternate policies

N. The mean bandwidth has been subtracted, and thefor afixedV
quantities have been normalized by the number of sourcesy goal in this paper is to explain the forms of the
curves in figures 1 and 2.

T T T
—— Cost(IB) — Cost(Opt)
— — Cost(FB) — Cost(Opt)

llocati

4
0.01 a B

Cost difference

x10°°
0.04 7

C. Principal Results

1 We first consider a single node which multiplexes a
Optimal Banawidth ( above average ) / source large number of i.i.d. on/off fluid flows, under a maximum
RN i / 1s overflow probability constraint on the class. We use Taylor
series expansions of the overflow probability to determine
Optimal Bufter rsouee = a representation of the feasible combinations of buffer and
T T bandwidth. The costs are then used to determine the opti-
mal choice of buffer and bandwidth. Our principal result

“%Bs e 7o s so oo i im0 im0 w0 i is that the optimal bandwidth is given by:

Optimal bandwidth(above average) per source
o
o
®
/
Optimal buffer per source

Fig. 1. Optimal buffer and bandwidth allocations veraus ¢ = N(u+k/VN 4+ O(1/N)) 2

We note that the optimal buffer per source and the op?d the optimal buffer is given by:
timal bade|dth per source (above average) appear to be = N(k;/\/ﬁ +O(1/N)) 3)
decreasing convex functions of the number of sources.

Now consider two common resource allocation policieaherey is the mean rate per source atjdandk; are pos-
A Fixed Buffer(FB) policy allocates dixedamount of to- itive constants that depend upon the statistics of a single
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traffic source and upon the ratio of the cost per unit bancbnsistent with our results for on/off sources, but less spe-
width to the cost per unit buffer. cific.

These results imply that as the number of sources in-In section Il, we consider on/off sources. In sections
crease, the minimum cost solution (under fixed per unitA and 11-B, we review our network model and Morri-
buffer and bandwidth costs) is to not to add buffer arsbn’s expressions for overflow probability, and illustrate
bandwidth in constant proportion, but instead to first aduliffer versus bandwidth tradeoffs with some numerical ex-
the mean bandwidth of each source, and then to add adiples. In section II-C, we derive the Taylor series expan-
ditional bandwidth and buffer in approximately constarsions for overflow probability. In sections II-D and II-E,
proportion. Furthermore, we demonstrate that the the cest derive the minimum cost buffer and bandwidth alloca-
savings of this optimal allocation over an allocation thaibns and present our principal results for on-off sources.
maintains a fixed buffer per source is proportional to tHe section Ill, we consider general sources.
square of the percentage difference between the assumed
number of sources and the actual number of sources and to Il. ON/OFF SOURCES
the square root of the number of sources. A. The Network Model

We base our analysis upon an estimate of overflow prob- , _ . _
ability derived by Morrison [15]. This estimate predates We consider a smgle_ queue fed Byi.i.d. onfoff ﬂu'd_
almost all of the effective bandwidth literature, and latgiPUrces, as shown in figure 3 BOFh the on anc_j off times
effective bandwidth estimates for on/off fluids are sig‘rj}re assumed to be EXpO”ef?t'a”Y d'St_”bu'[ed' Without loss
nificantly more accurate, particularly with regard to th8f generallfcy, we measure time in units equal tg the_ aver-
asymptotic constant (see e.g. [16], [17], [18]). Howevefde On period of a source, and measure bandwidth in units
as mentioned above, the effective bandwidth literature t qu_al to the peak rate of a source. We denote the average
ically assumes that buffer and bandwidth are allocated p ftime by 1/A. The mean rate per source is thus equal to
portionally. In contrast, Morrison derives his estimate uﬁ\/(1 +A).
der independently chosen buffer and bandwidth, for a wide °
range of buffer sizes that bracket those in (2) and (3). It
is worth stressing at this point that we are not proposing
that the Taylor series expansion be used to predict ovf> ™=
flow probability, as we do not believe any Taylor series ex-

Outgoing transmission

e :
pansion would be an accurate predictor of overflow prob- — Output Link
ability. Our goal in this work is to obtain an asymptotic i
relationship between the optimal buffer and bandwidth al- ° Bulfer Sze

location and the number of sources. This requires a sim-_ , , )

ple representation of overflow probability as a function of Fig. 3. Diagrammatic representation of the network model

both buffer and bandwidth, and the Taylor series expansion

serves this purpose. In numerical examples, we use the parameters given in
We next consider a single node which multiplexes the motivating examples above. Using our normalization,

more general class of i.i.d. flows, provided that the aggrwith bandwidth measured in multiples of 8kpbs and buffer

gate effective bandwidth is a decreasing convex function®easured in multiples of 340B, this givas= 0.436 and

buffer and linearly proportional to the number of sourceﬁ = 0.3036.

Without relying on any particular expression for effective A fixed buffer z and a fixed bandwidtlz is reserved

bandwidth, our goal is to explore the variation of the oger this class of traffic. We denote the buffer per source

timal bandwidth and buffer allocations with respect to thg:/N) by £, and the bandwidth per sourag/{V) by v, and

number of sources for a more general class of sources thgaume that the bandwidth per source lies strictly between

the on/off sources considered earlier. the mean rate and the peak rate, namely that:
We use the form of the aggregate effective bandwidth \
function to prove two principal results. First, we prove T <y<1
+

that the optimal buffer is strictly increasing M. Second,
we prove that the excess cost incurred by a fixed buffer al-ring|ly, we denote the bandwidth above the mean rate
location over an optimal allocation is an increasing conver source by:

function of the difference between the assumed number of Y

sources and the actual number of sources. Both results are 0=7- 1+ M
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In numerical examples, unless explicitly mentioned we. Numerical examples

setlV = 500, & = .0410, and the maximum probability of  r jstrate the basic problem consider in this paper, we

overflowp = 0.01. return to our motivating example to illustrate the effect of

_We briefly restate the expressions for overflow probga ving the number of sources, the buffer and the band-
bility derived by Morrison [15]. His derivation starts W'thwidth. In figure 4, the overflow probability is plotted for a

earlier work by Anick, Mitra and Sondhi [19], which State?ange of N for a fixed bandwidth per source
that the equilibrium probability that the buffer content ex-
ceedsr in an infinite buffer system can be expressed as: *

N—|Nvy|-1 10
G(N,z,7) = Z Dje_ojm
§=0

N from 500 to 1000

Probability G(x)

b
o
T

whereo; are eigenvalues of the buffer dynamics, ang
are constants that depend on these eigenvalues. Theres |
atotal of N — |c| terms, corresponding to the range in th”
number of on sources for which overflow occurs. Morrisc
based his approximation (N, x, v) on the largestterms  *"¢
in (4).
Assuming that the number of sources is large 1),

the bandwidth per souree= O(1), and that the either the
total bufferz = O(1/N) or x = O(1), Morrison shows _ _ ) _
that the main contributions arise from the largest eigenval- 1 n€ figure illustrates the relationship between overflow

ues. This leads to an asymptotic expression for the ovBFoPability p, total buffer, and the number of sources
flow probability: N, assuming that the resource allocation policy assigns

bandwidth proportional to the number of sources. As dis-
1
G(N,z,7) = = \/ r o~ NE()

I I I I I I L I I
o 5 10 15 20 25 30 35 40 a5 50
Buffer Size x

Fig. 4. Overflow probability for a range df

cussed by many previous researchers, overflow probabil-
2\ mf(My+ AL =N ity decreases withV, when there is a fixed bandwidth per
2V T HAA-)]Ne} p—g(7)e

source and either a fixed total buffer or a fixed buffer per
source. These observations represent two paths through

®)

where these overflow vs. buffer curves.
~ [y(14A) = A An alternative view is shown in figure 5, in which
f(v)=in [)\(1 — V)} A=) (6) the overflow probability is varied for a fixed number of
sourcesN. Each curve represents a contour of the over-
_ DA+ A=A (7) flow probability function, and shows which combinations
(1 =) of buffer and bandwidth produce the same overflow proba-
k(y) = ylny+(1=~)In(1—~)—~In(A\)+in(14+X) (8) bility. Note that there is a substantial range of slopes along
1 P’ (1—7) each contour. The optimal resource allocation policy will
gy =k+ 5y +Al - 7)]W (9 choose buffer and bandwidth to equate the slope of the

(27 =Dy +X) = AP

A e e Vo e S
o A1 —2y)
S A S Y ) —

Morrison also considered the case whéfe> 1, v =

contour with the corresponding price ratio. Alternate poli-
cies such as fixed buffer or incremental buffer do not take
into account the prices of each resource and therefore may
produce quite different allocations. The range in slopes
means that there is a significant achievable cost savings of
the optimal resource allocation policy over fixed buffer or

O(1), andz = O(N). He develops an approximation byincremental buffer policies.

again expanding around most significant terms, althoughBuffer vs. bandwidth contours for fixed but varying
these no longer correspond to the largest eigenvalues. Mare shown in figures 6 through 8. Figure 6 shows the
shows that the largest terms of the resulting expressimal buffer and total bandwidth per source. The majority
agrees with the largest terms of (5). Although it has nof the bandwidth is due to the mean rate, which must be al-
been proven that this approximation is uniformly accuralecated (at loss overflow probabilities) under any resource
throughout the range from = O(1) toxz = O(N), we allocation policy.

will use this expression as our starting point. Figure 7 takes out the mean rate from each contour.
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0.4 T T T T T T T T T 200

Overflow Probability = 0.0001
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Bandwidth per source
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Total bandwidth
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Fig. 5. Buffer vs. bandwidth contours for a rangepof
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Fig. 7. Total buffer vs. total bandwidth above average contours
for a range ofV

0.055

o
<}
a

o
o
Iy
a

°
<}
£

0.035

Bandwidth(above the average) per source

o
o
@

Optimal Buffer/Bandwidth Points

N =900

0.025
o

Fig. 6. Total buffer vs. total bandwidth contours for a range of

N

Multiplexing gains mean that largeN correspond to

Fig. 8.

i i i i i i i i i
0.001 0002 0003 0004 0005 0006 0.007 0.008  0.009 0.01
Buffer per source

Buffer per source vs. bandwidth above average per

source contours for a range of

larger bandwidth and buffers, but with decreasing incrder § < 1.
Substituting (12) into the first term of (6), we get:

ments. A fixed buffer policy would constitute\eertical

line through the set of contours, and an incremental buffer
policy would constitute a curve witfixed horizontal incre-
mentghrough the set. Note again that there is a large range

{(1’7_7)} _In [1 + 5(1“)} a1 = 6(1 4+ \)]

A

of slopes, indicating that the optimal policy can adjust the Using the Taylor series expansion

allocations significantly.

Figure 8 shows the same information, but with each axis
normalized by the number of sources. Multiplexing gains

mean that large?N correspond tdower bandwidth and

ing choices of buffer and bandwidth are also shown.

C. Taylor Series Expansions

In this section, we develop Taylor series approximatioR§ovided that =-5

22 23

buffers per source. A fixed buffer policy would now cont—hIS reduces to

stitute a curve through the set, while an incremental buffer (1
policy would constitute a vertical line. The cost minimiz-

ln(1+z):z—?+§—--- (13)
I i)} 5+ [(1 L1 ;)} 5
% {(1 + )71+ Alg)] 7 +00h)  (14)

S(14X)

< 1.

for the overflow probability (5). We start by expanding the The second term irf(y) similarly reduces to
constituent parts of (5) expressed in (6) through (11). The

general approach is to expand the expression using:

(12)

(14 X)2 1+ AN -1) ,
y o+ 2 0° +
(A2 =121+ N)? 4 4
o 5+ 08
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Putting together these expressions for the two terms in

provided thatd(1 + \)| < 1.
Together these two terms give (17) we find
(AN 4 1+ X2, 3
f) = 553 0° +0(0") (15) R(7) = 50" +0(8%) (18)
We next consider (7). The numerator reduces( We continue with (10). A similar use of Taylor series
)). The denominator can be expressed as results in:
A . LI+ 2T 1)1
AN -2 pP(l—7v)=¢ J
{1+/\+6} [1 [ 5} 8 At
- 11+ 5 ((1+ X8\ —1)2
Together we find - il 4
9 +[ ( s )+16( X 5
o+ [ 1 +0(5°)
B A _ (A1) 2
1 ( A ) 0+0(0%) We continue with (11). A similar approach results in:
Using the Maclaurin expansion 3 (A —1)2
k=_-(1-=X)—[(1+X)[1+ 5+ O(6%)
s 3 2 4\
1> =1l+z+2"4+2"4+---
Finally, we substitute these two expressions into (9) to
we can express this as find:
1+ )3 1+ (-1 _ A+ D5 2
¢ J; ) 5] {H(( + )A( ))5+O(52)] 9(7) = SN =260+ 116+ 0(6%)  (29)
(16) This completes the development of Taylor series expan-
sions for (6) through (11). We now use these expressions

provided thaﬂwé‘ < 1.
We continue with (8). We can combine terms to expregderive the Taylor series expansion for the overflow prob-
ability (5). Using (15), the first term can be expressed as

this as
k() =t | el =) X)) 1 ¢ r _
(1 =7)A 2\/ 7 f(V)[y + A1 —7)IN
An approximation for the first log term was found above 3\ 1 . .
to be (14). Multiplying byy we have \/; [(1 n /\)5 +0(6°)
(14);)\ + 5) [(1 +A)(1+ i)} 5 Using (18), the second term can be expressed as
1 1 “Ne(y) _ NN 520 60n53)
+2{(1+)\) “‘M]‘;? - Vet
+l [(1 FAB(1+ /\13)} 5 + 0(6Y) Similarly the third term can be expressed as
o2V I (ND+AA—)Nz} _

which after some simple manipulation results in _2\/70(;@5531\/%0(541\79;)

A+1)° 3

(A+1)o+ 2\ o 0 00 sing (19), the fourth term can be expressed as
=97 — o~ EEL 1IN -26A+11)52+0(5%2)

The second term in (17) can be expressed as

Finally, combining these four terms we get

In[1 — 6(1+ \)]
G(N,z,6) = (\/‘15 +O(1/VN))

—(caN§2 43/ Natcada+O(NG)+0(53 N

Using (13), this becomes

—5(1+N) —52(”2”2 —53(”;)3 Loy,

1 1
N2e2)+00%) (20)
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where andé. The buffer and bandwidth allocation that minimize
cost subject to a maximum overflow probability;oére:
3N 1

cp = P E—— *

Var T N 5 = L 4L oa/n)

(1422 VN
“2 = T &* = mkiVN 4+ 0(1)
14+ NP . :

c3 = 2 ( ;)\2) wherem = p./p, andkj is the solution to

A+1 L
cr = T (I =261+ 11) (21) kK:2(ca + Vimes +mer) + (B =0 (22)

c1
We will use _thls expression for oyerflow probgbllltyt herecy, ca, 3, ande, are the constants given above.
derive the optimal resource allocation scheme in the fol- 100f:

lowing sections. The benefit of this Taylor series represen- . . .
ving o Y P We start with the constrainG(N,z,d) = p, with
tation is that it is amenable to analysis.

However, we stress that our goal in this paper is to e§<;-(N’ z,0) glv_en.by (20). Taking logarithms on both sides
plain the forms of the curves in figures 1 and 2. We do n%pd rearranging:
expect that any Taylor series expansion would be an accu-
rate predictor of overflow probability. To underscore this

point, we numerically compare the Taylor series expansion

(20) with Morrison’s expression for overflow probability

— _n p
(5) in figure 9. = (cl/(\/ﬁé)JrO(l/\/ﬁ))

107

o N2 + es VBN + cadz
+O(NS®) + O(33 N2z2) + O(5%)

(23)

Now suppose that = k;/vN andz = ko/N for

4 somek; = O(1)andks = O(1), and furthermore suppose
thatks = mk; + O(1/4/N). By substitution into (23), we
get

Calculated G(x)

H
O‘

N
o
IS
T

k2 (ca 4 v/mes + mey) + In(pki Je1) = O(1/VN) (24)

Overflow Probability G(x)

i
o,
T

Let k] be the solution to (22), and |&§ be the solution
to (24). Therk; = kf + Ak, where:

B
)
5
T

107

I I I I I I I I I
o 5 10 15 20 25 30 35 40 a5 50

Buffer Size x Ak N O(]_/\/N)
Fig. 9. Taylor series expansion vs. Morrison’s expression ﬁ [k%(@ + /meg + meq) + In(pky /1)) |k1:k;
Although the Taylor series approximation to the lead- _— O(1/VN)
ing constant is good, the approximation to the exponential 2k7 (c2 + v/meg +mey) +1/k]
terms is rough, since only the first term was retained. The = O(1/VN)

error can be greatly reduced by incorporating additional
terms into the expansion, but these additional terms do nott follows that:
affect the principal results given in (2) and (3) and there-

fore we do not include them in our analysis. ki = ki +O(1/VN)
. . K+ O(LVN) Kkt

D. Optimal Resource Allocation o= = +O(1/N

g N vn o)

In this section, we will derive the optimal allocation of
buffer and bandwidth to a class of on/off fluid flows under

v = [m(k + O(1/VN)) + O(1/VN)| VN

a maximum overflow constraint. Our principal result is: = mkiVN +O(1)
Theorem 1:Suppose that each unit of buffer incurs a
costp, and each unit of bandwidth incurs a cast As- This establishes that andz* as stated in the theorem

sume thatz(N, z, §) is decreasing and jointly convexin satisfyG(N, x*,5*) = p.
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Furthermore, this solution minimizes the cost if angdavings of the optimal allocation over either of these al-
only if the slope of theZ (N, x, ¢) contour at a fixegh is  ternative resource allocation policies is proportional to the

equal to the price ratio, namely iff square of the percentage difference between the assumed
number of sources and the actual number of sources and to
_8G/8x _ Pz _ 1 the square root of the number of sources.
9G/dc DPe m We define our two alternatives formally as follows. De-

It can be easily verified that: andz* satisfy this condi- fine N as the nominal number of sources upon which the

tion, sinceks = mk; + O(1/v/N). The theorem follows. initial buffer and bandwidth allocation is calculated. Cor-
m respondingly, denote and¢ as the minimum cost alloca-

These results imply that as the number of sources f#n of buffer and bandwidth such th&{(N, z, ¢) = p.
crease, the minimum cost solution (under fixed per unitDenote the current number of sourceshasand the er-
buffer and bandwidth costs) is to not to add buffer af@" in the estimate of the number of sources/ay =
bandwidth in constant proportion, but instead to first ad — V- The fixed b/Uﬁef (FB) resource allocation po/llcy
the mean bandwidth of each source, and then to add gtecates a buffer af” = & and a bandwidth of , wherec
ditional bandwidth and buffer in approximately constaf® the value that satisfigs(\V, 2/, ¢') = p. The incremen-

i tal buffer (IB) resource allocation policy allocates a buffer
proportion. policy

For numerical illustration, the optimal buffer and band?f«’ = IV/N& and a bandwidth of , wherec’ is the value
width (above average) allocations per source were sholgt satisfie€z(N, 2/, ¢) = p.
in figure 1, as a function of the number of sourcs ~ The cost of the optimal policy I€™ = p,z” + pec”
(for m = 1). The optimal bandwidth per source followdvherez™ andc* are the optimal buffer and bandwidth al-
the predictedl /v/N form (22) very accurately. The Op_Iocg‘[ions as shown above. Expressing the bandwidth allo-
timal buffer per source also follows the predictethy/ N cation as=® = N(A/(1 + A) + %), we can break out the

form, but with a small error that indicates the presence &#St as

a smaller order term. Cf — o N A . No*
In figure 10, we plot the optimal buffer and bandwidth = PNy TP Pe

(above average) allocations per source versus each otheé. . I
: o : ; imilarly, the cost of an alternate policy is

As illustrated in figure 8, the optimal allocations per source

decrease with increasing. If the price ratio of bandwidth y A , y

to buffer is decreased from = 1 to m = 0.8, then the ¢ = ch1 + A +Pa’ + pelNO

optimal allocation shifts to a higher bandwidth and lower

. wherec = N(A/(1+ X)) +¢').
buffer. However, the form of //N remains true. The cost savings is therefore

0.042 iési AC _ C/ o C* — px(l‘/ _ x*) +ch(5/ _ 5*)

0.04

0.038 -

We should expect that the cost savings will be a func-
tion both of the nominal number of sourcég, and of the
error in the estimate of the number of sourcAsy. Our
principal result is:

Theorem 2:Consider either the FB or IB policy given
above, with [V as the nominal number of sources upon
which the initial buffer and bandwidth allocation is calcu-

L . " J_ lated. LetC’ represent the associated cost when the num-
Optimalbuter per ource ' =" ber of sources i&V, as given above. Then the cost savings

Fig. 10. Optimal buffer versus optimal bandwidth of the optimal policy over the alternate policy is:
AN\? /-
AC ~ ( > ) V& (25)
Proof:

For the FB policy,

0.036 [

0.034 -

0.032 -

o
9
@

0.028 -

Optimal bandwidth(above average) per source

N from 500 to. 1500,
step size.is 100

0.026 -

0.024 - N = 1500

0.022 L L L
2 25 3 3.5

E. Comparison to Alternative Schemes

In this section, we compare the costs of the optimal re-
source allocation to methods in which the total buffer allo-
cated to the class is either constant or linearly proportional N \f N AN
to the number of sources. We demonstrate that the the cost VN
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provided thatATN << 1. and thus )
For the IB policy, O%c _ O(L)
Ox? VN
N [« AN
x’—x*N\/N——A\/EN _ sinced¢ = O(1).
N VN Substitgting this back into the Taylor series (26) and us-
provided thatAWN << 1. Ing NV ~ N,
Now all these policies (the optimal, FB, and IB) lie on 1, o
the same buffer vs. bandwidth curv@((V, z,¢) = p). AC(N) ~ m(x — )

Furthermore, the optimal allocation is tangent to the mini-
mum cost line. We use a Taylor series expansion abbut Finally usingz’ — 2* ~ A—\/Ji,
N

for ¢’ — C*:
2
(26) Ac) ~ (S5) VN

d%c x — x*)?
( ) <

The cost savings thus depends on the shape of the buffelj_: r numerical illustration. in figure 11. we plot th Tt |
versus bandwidth curve. We approximate this contour, ornumerical Ifustration, in igure 21, we plot in€ tofa
. . . . . uffer and bandwidth allocations for the optimal policy,

by starting with the representation of it expressed in (2

Dropping theO() terms, and substituting — /z, we can r the fixed buffer policy, and for the incremental buffer

restate this as policy.
ay® +by +d~0 _
wnere il s
a = 646 oor N = 900 |
b = C3\/m é oo N
N5 g 240 i
d = 62N52 + ln(p\/i ) - . N = 700
Cl 220 o i
Assuming that = O(1/VN) andz = O(VN), we — wew /7 7

Total buffer

Sincey > 0, it follows that
Fig. 11. Buffer versus bandwidth allocations for alternative

. —b+ Vb® — 4ad policies

b+ b(21a_ %%d) As _ment_ioned above, the fixed buffer policy consf[itutes
~ %a avertical linethrough the set of contours, and the incre-

mental buffer policy constitutes a curve witixed hori-
~ 7 zontal incrementghrough the set. We have set the nom-
inal number of sources upon which the initial buffer and

and thus ) bandwidth allocation is calculated/) to be 750, and then
T~ % varied the actual number of sources about this value. Cor-

respondingly, whervV = 750 all allocations are identical
Differentiatingx twice with respect t@, and using) = by definition. WhenV varies from this nominal value, the

O(1/V/'N) gives (after a lot of algebra) fixed buffer policy changesnly the bandwidtiso that the
) new allocation is on the new buffer vs. bandwidth contour.
oz = O( N3/2) The incremental buffer policy varies the buffimearly,
962 and sets the bandwidth so that the new allocation is also
Consequently, on the new contour.

A close examination of figures 6 and 7 shows that for
our set of parameters the slope of each contour, at a fixed

0%x 1
ﬁ) total buffer, is increasing in magnitude with increasiNg

dc2
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It follows that the optimal policy will increase the totalA. The Network Model
buffer allocation with/NV in order to maintain a constant We again consider a single queue fed Nysources.

slope equal to the price ratio. Similarly, an examinatiq} ¢onirast to the assumption in previous sections that the
of figure 8 shows that the slope of each contour, at a fiXegrces are i.i.d. on/off fluid flows, we now allow any gen-

buffer per sourcg, idecregsing(vith increasing. It fol- eral form provided that the aggregate effective bandwidth
lows that the optimal policy will decrease the buffer allog

i S PR o= s a decreasing convex function of buffer and linearly pro-
cation per source withV in order to maintain a constant, o ional to the number of sources.
slope. Thus, for our set of parameters, the optimal policy-l-he convexity property is satisfied by many effective
lies strictly between the fixed buffer and incremental buffgfy 4 yidth derivations in the literature. The assumption
policies. that effective bandwidth scales linearly with respect to

The analysis for the cost comparison explains figure ge number of sources, however, is clearly inaccurate, as
which shows the cost differences between the optimal pglsmonstrated in the literature on effective bandwidth and
icy and FB and IB. As in figure 11V is varied about the j the previous section. The literature on multiplexing,
nominal value of N = 750. All three policies are gen- however, has often proposed the view that multiplexing
erated directly using Morrison’s expression for Overﬂo‘ﬂains come from two sources. First, variance in the dis-
probability. The Taylor series analysis above (25) prediGi$yution of the rate of sourcest a fixed timegive rise to
that the resulting cost savings should be quadratis M  efficiencies when multiple sources share a common band-
for a fixed V (for small values ofAN). The plot agrees yigth (even with no buffer). Second, variatiover time
well with this form. The asymmetry can be attributed tg, the rate of a single source give rise to efficiencies when

the presence of a third order term, which was neglectedifyt source is buffered (and therefore smoothed). We view

the analysis. the results in this section as descriptive of the second type
In figure 12, we plot the cost differences between thg multiplexing gain (smoothing).

optimal policy and FB and IB, but with a fixed percentage As above, we denote the aggregate bandW|dth31by

error between the nominal and actual number of sourgag aggregate buffer by, the overflow probability by

LJQN =0.2. G(N,z,¢/N), and the maximum acceptable overflow
probability by p. We denote the effective bandwidth for
[ a single flow by

o
o
N

eb(z) = c| [G(1,z,¢/N) = p]
and the effective bandwidth fa¥ multiplexed flows by

| eb(N,z) = Neb(x)

0.014

Cost difference between IB/FB and Optimal allocation

B. Optimal Resource Allocation

o
o
e
N

As above, we assume that each unit of bandwidth in-
00y se ees o s oes o 1ios 1m0 1w oo CUIS @ CcOSp, and each unit of buffer incurs a cqst We

e denote the optimal buffer allocation by
Fig. 12. Cost difference between optimal and alternate policies

for a fixed Y-V z*(N) = arg n}rin[pxx + peeb(N, x)]

The Taylor series analysis (25) predicts that the resultiafd the resulting optimal cost by
cost savings should be proportional to the square root of
N for a fixed percentage error. The plot agrees quite well
with this form.

C*(N) = pzz”(N) + peNeb(z"(N))

It follows that the slope of the aggregate effective band-
width with respect to the allocated buffer, at the optimal

Ill. GENERAL SOURCES point, must be equal to the price ratio:
Our goal in this section is to explore the shape of the ONeb(z) deb(z) Da
variation of the optimal bandwidth and buffer allocations —z =~ la+(n)= N =5 = la=(n)= o —1/m

with respect to the number of sources for a more general
class of sources. whenever*(N) > 0.
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The constant cost contour and optimal allocation are il- l[x*(N) — 2]
lustrated in figure 13.

Our principal result in this section is: - /”C*(N) {_Naeb(az) R
Theorem 3:The optimal buffer assignment is strictly < Jar () Ox m
increasing with the number of sourcég, whenz* (V) >
0. . L bandwidth
Proof: The proof is by contradiction. Suppose that fixed buffer allocation for N sources
x* (N) Z IL'*(N + 1) It follows that proportional to cost difference
Geb(x) 861)(33) optimal allocation for N sources
ax ‘x (N) ( ) 8'T ‘x N+1 / constant cost contours
and therefore that
8eb ‘x iy N . eb(lA\I, X)
eb(N, x)
5D |y N1

~ buffer
optimal allocation for N sources

However ifz*(N) > «*(N + 1), then this violates the
assumption thatb(z) is a decreasing convex functiorl

This theorem can be compared to Theorem 1, which
states that for on/off sources the optimal buffer allocation This last expression can be viewedagimes the ver-
is proportional to,/N. Theorem 3 considers a wider clastical distance between the aggregate effective bandwidth
of flows, but is weaker than Theorem 1 in that it only guacurve and the tangent line to the curve at the nominal al-
antees that the buffer allocation is increasing. location, evaluated av sources. This vertical distance is
illustrated in figure 13.

Using similar expressions foACrp(N + 1, N) and

In this section, we compare the cost of the optimal r&«Cr(N + 2, N), we can represent second order differ-
source allocation to a Fixed Buffer policy. The cost of thences as:
Fixed Buffer policy, usingV as the nominal number of

Fig. 13. lllustration of cost difference

C. Comparison to Alternative Schemes

sources upon which the initial buffer and bandwidth allo- ACFp(N +1,N) = ACFp(N,N) =
cation is calculated, is @' (N+1) poeblz) 1
. . *(N) dr  m
Crp(N) = paa"(N)+ pcNeb(z"(N)) eb()
= C*(N)+pe(N — N)eb(a*(N)) *(N [ } dv (27)
Denote the cost savings of the optimal policy over thend as:
FB policy by: . .
POIEY Y ACrB(N +2,K) = ACpp(N +1,N) =
ACpp(N,N) = Cpp(N) — C*(N z*(N+2)
rB(N,N) = Crp(N) () pc/ _(N+2)aeb(x)_1} i
. o S 2*(N+1) ox m
Our principal result in this section is: 2 (N41)
Theorem 4:ACrp(N, N) is increasing and convex in +pc/ _aeb(ﬁf)} i (28)
|N — N|, whenz*(N) > 0. z*(N) Oz

Proof: _ . In equation 27, the first integral is an integral of a pos-
Substituting expressions f6f5(N) andC*(N) from jiive quantity (sinceeb(z) is decreasing and convex and
above, W |2+ (v4+1)= —1/m) over a positive range (from

ACp5(N, N) = o[z (N) — a;*(N)] Theorem 3). The second integral is also an integral of a

+peNeb(z* (N) — eb(z* (V)]

Without loss of generality, assume thsit > N. This
expression can be written as:

ACpp(N,N) = pc{=Neb(z*(N)) - eb(z" (V)]

positive quantity (sinceb(x) is decreasing) over a posi-
tive range. The sum therefore is positive, establlshlng that
ACpg(N, N) is increasing inV whenN > N, or more
generally increasing iV — N/|.

We can establish convexity by considering the third or-
der differences. Subtracting the second order differences
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(equation 27 from equation 28) and collecting terms, we
obtain: [1]

[ACFrp(N +2,N) — ACpgp(N +1,N)] [2]
—[ACFB(N +1,N) — ACpp(N,N)| = (29)
@*(N+1) 11 deb(x)
o — N
b /M) m " os } de 3]
z*(N+2) 1
+pe / _(v 1+ 222 _ } iz (30)
z*(N+1) ox m

(4]
Similar to the previous integrals, these can be shown
to be positive, using the decreasing convexity property of
eb(x) and using Theorem 3. The sum is therefore positi\}ér)],
and it follows thatACrp(N, N) is convex in|N — N|
whenz*(N) > 0. H (6]
This theorem can be compared to Theorem 2, which
states that for on/off sources the equivalent expression for
the cost difference is proportional to the squarEZ‘O#NL 7]
Theorem 4 considers a wider class of flows, but is weaker
than Theorem 2 in that it only guarantees that the cost dif-
ference in increasing and convex|iN — N/|. -

IV. CONCLUSION

We first considered a single node which multiplexes 3]
large number of on/off fluid flows. Under a maximung
overflow probability, we proved that the optimal band1gj
width allocation above the mean rate and the optimal
buffer allocation are both proportional to tkguare root
of the number of sourcesThis is in contrast to current
approaches which often allocate eithdixad total buffer
or afixed buffer per sourceMe compared the optimal al-
location to these alternative allocations, and proved thal]
the excess cost incurred by a fixed buffer allocation or by
linear buffer allocations is proportional to the square ?{3]

[11]
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